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Abstract

A theoretical model for the visual integrative proccss is advanced
that 1s based upon microelectrode studies of the animal visual cortex
by Hubel and Wiesel, Jung, and others. 1In this theoretical model the
cortical columns of direction-sensing elements found by Hubel and Weisel
are interprcted as sets of isoclines making up the visual field. The
form of a visual image corresponds to a family of contours ("orbits" or
"paths", in the terminology of differentiul equations) that pass through
those isoclines stimulated by the corresponding retinal regions. A con-
tour of an image is thus approximated in the visual cortex as an iso-

clinic polygonal arc.

Hubel and Wiesel's microelectrode studies are thus strongly sug-
gestive of a differential equation interpretation of the wisual inve-
grative process. The invariance of the visual integrative process under
rigid motions (translation and rotation) and perspective that is required
by the psychological phenomenon of Gestalt enables us to specify the
particular form of the differential equations involved. The latter
then‘permit a ready explaration of such visual phenomena as McKay's

complementary after images, the whirling spiral images evoked under

flicker, and the alpha rhythm and i%s desynchronization.
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I. INTRQDUCTION

Historically, pattern recognition has been synonymous with statis-
tical classification. A pattern is abstracted as & point in a finite-
dimensional sample space, the dimensionality of which corresponds to
the number of identifiable characteristics of the pattern, The procedure
for pattern recognition then involves partitioning the n—<iimensional
sample space in such a way that the sample points representing one class
of patterns are essentially separable from the region associated with
any other class. As such, this is a generalized form of the ctatistical
problem of classifying an observation into one of finitely many popula-
tions (Anderson, 1958, Ch.6; Rao, 1952, Chs. 8,9; Sebestyen, 1962;

Abramson, 1963; Braverman, 1963).

Certain aspects of this apprcach run counter to what one ordinarily
thinks of as constituting a "pattern", namely, some sort of connected
configuration without essential discontinuities in its geometry, smooth-
ness, symmetry or the like. An optical image, Tor example, may be
thought of as a collection of contours (or patns). It is not clear
that the optimel recogniticn procedure lies in abstracting this image
to a single point of a higher-dimensionel space obtained from a sub-
division of the image into n rectangular elements. In ract Swerling
(1962) has given arguments indicating that analysis of a random surface
in terms of ccntours requires appreciably less information, and similar
economies have been noted by Attreave and Arnoult (19%6), Capon (1959),

Unger (1959), Wholey (1941), and others.




For such patterns as optical (or visual) images it seems clear
that the characterization would be improved by retaining their con-
figurational aspects. Since &n image may be characterized by the
arrangement of contours in it, the usual finite-dimensional character-
ization of classical pattern recognition theory should be improved by
taking the full geometry into account. A number of approaches are

then possible.

Each contour in the figure can be considered as a point in an
infinite-dimensional space, namely the semi-Banach space of curves
(Fréchet, 1962). This approuch may be particularly well suited to
a generalization of the classical pattern recugnition method of sepa-
rating regions corresponding to the various classes by means of finite-
dimensional hyperplanes. The question of linear separation (classifi-
cation by a separating hyperplane) of subspaces of reflexive Banach

spaces has recently been settled by James (1964).

However, the less abstract apprcach embodied in contour repre-
sentation by meens of tricoordinates (abscissa, ordinate, and slope)
-
(Attneave and Arncult, 1956) apparcntly has more far-reaching impli-
cations for such pattern recognition phenomena as the visual integrative

process. Our stuly of pattern recognition will therefore be couched

largely in terms of tricoordinates, or direction-field elements.

Still another approach, that in fact is closely related to that
* of tricoordinates (especialiy in the recognition aspect itself), follows

from regarding visual patterns as Markov processes in time and space.

o
M“m R T b T e e B R e e o ol o o o



The work of Beutler (1963) leads naturally to such in interpretation,
once the stutistical declsion problem arising out of the association
between differential equation and contour comes under consideration.

We note that trajectories are involved in both approaches.

As noted above, the tricoordinates of a point on a curve consist
of the rectangular coordinates of the point and tne local value of
the derivative

(X,y, %)' ’ (l)

A well known result from the theory of diffe:iential equations (Bieber-
bach, 1956, p. 27) states thnt an approximative polygonal arc made up
of n such elements, each of which consists of a point and the asso-
ciated local tungent, can be made to approach arbitrarily close to an

integral curve of the differential equation

%§-= £(x,y), (2)

80 long a8 f remains continuous. The essential feature of our theo-
retical model for the pattern recognition process is the approximation
of a contour by such a polygonal arc as that described above. Form
vision rather than brightress is of primary interest in the present
context, and color vision is not considered &t all. Brightness is

in principle readily taken into account by including in the “orm
character specified by f(x.y) in (2) the frequency of firing of the

particular neurors involved (Rushton, 1961; Jung, 1961 a,b).
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As will be chown below, the polygonal arc approximation to a
shape leads naturally, in the context of trne visusl integrative pro-
cess, to the graphical integration technique known as the method of
isoclines (Andronow and Chaikin, 1949; Cunninghanm, 19583 Kaplun, 1958).
The Gestzlt character of visual pattern recognition cemands invariances
of a type associated with Lie groups (Cohn, 1957; Ince, 1956; Kowalewski,
1950; Lie and Scheffers, 1893; Yano, 1957). Invariance under the appro-
priate Lie groups tells us what particular form the differential equa-
tions must have. The thenry of these cifferential equations is then
developed and related to such visual phenomena as Jung's A,B,C,D,E
type neuront {(Jung, 1961 a,b),MacXay's complementary after images, the
alpha rhythm and its desynchronization, and the whirling spirals often
evoked under flicker (Walter, 1953). S ’zn reversal in this system of

differential equ:tions governing the visual integrative process is

apparently closely related to such conditions as developmental dyslexia
(Bender, 19573 Money, 1961; Stuart, 1963), but a complete discussion
of this will be reserved for a separate publication. The statistical
decision theory aspects of pattern recognition via the method of

isoclines will also be only briefly taken up in the present paper.




IT1. MICROELECTRODE EXPLORATION OF THE VISUAL CORTEX

The use of microelectrodes for deep peretrations of the animal
cortex in the manner of Mountcastle (Mountrastle, 1957; Powell and
Mountcrastle, 1959) has provided neurophysiolcgists with a powerful
new tool for determining the response characteristics of single cor-
tical neurons. Microelectrode studies have been made of the cat
auditory pathway (see Katsuki, 1961, and the references cited there) ;
the somatic afferent system in cat and monkey (Mountcastle, 19€1); and
the visual pathway in the cat (Hubel, 1963a; Jung, 1961 a,b). It is

primarily the latter that will concern us here.

1. Hubel.and Wiesel's Migreelenvrode Studies of the Aripel Viswsl Cortey

Ir. their series of microelectrode studies of the animal visual psth-
way Hubel and Wiesel (Pubel and Wiesel, 1962; Hubel, 1963 a,b) mapped
out the microrespunse fields in the hrain unier stim.lation of tne retina
by very small patterns of lignt. The visual stimulus is initially pro-
cesse’d by the retinal cells in the vicinity of the Illuminated spot. In
this processing the phenomenon of lateral inhibition plays a prominent
role. The visual stimulus is then transmitted along the optic nerve
and through the la‘eral geniculate bndy to the striate (or visusl) cortex.
The cells in the retina and the lateral geniculate body have a predomi-
nantly circular response (fig.l) of elther excitatcry or inhibitory type.
The shape of the response surface looks very similar to that {or a single

cable in a multi-channel telephone cable, where very small sideband levels

are used to reduce crosstalk.
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Fig. 1 Circular response of receptive fields of the lateral
geniculate body. (x, areas giving excitatory -"on"-
responses; A, areas giving inhibitory -"off"- responses)
From Hubel and Wiesel (1962).

The cells in the striate corte:r on the other hand respond in arn
entirely different manner, being arranged in fields with highly linear
responses (fig. 2). One type of such fields, termed "simple", responds
only when the linear light stimulus encounters the boundary between its
inhibitory and excitatory sub-fields. The response is strongly direc-
tional, an angular difference of at most 10° (and usually considerably

less) between “ine axes of linear light source and receptive field being

enough to annul the response.

The second type of receptive field, termed "complex" by Hubel and
Wiesel, is also highly orientation sensitive, but is characterized by
exhibiting a sustained response as the lignt stirmlus is moved over
relatively large regions of the ratina. The complex fields behave
as if they recelved their afferents from a large number of the cortical
cells in simple fields, all of which have essentially the same axis
orientation but which vary slightly among themselves in retinoptic pro-

jecticn.




Linear response of receptive fields of the visual
cortex. (x, arvas giving excitatory -"on"- responses;
A, areras giving inhibitory -"off"- responses. Receptive
field axes are indicated by contlimuous lines through
field centers.) From Hubel and Wiesel (1962).




Fig. 3.

Apical segment

Postlateral sulcus

\ \
Electrolytic lesion \

\

Reconstruction of microelectrode penetration through the lateral
gyrus (from Hubel and Wiesel (1962)). The electrode entered the
apical segment normal to the surface and advanced parallel to the
deep fiber bundles (indicated by radial lines) until white matter
was encountered. In the further advance of the electrode through
the gray matter of the mesial segment the course was oblique. The
receptive field orientations of the cortical cells are indicated
by longer lines transverse to the electrode track; crossbars at
the right hand end of the lines indicate axons. Approximate posi-
tiong of receptive flelds on the retina are shown to the right of
the penetration. Short lines transverse to the electrode track
indicate unresolved background activity.

i



Receptive field axes* of all orientations are found in the visual
cortex, the only apparent regularity consisting of aligiment ¢ither
nearly parallel or nearly perpendicular to the radial fiber in the
immediate vicinity. This feature is evident from figs. 3,4,5, repro-

duced here from Hubel and Wiesel (19262) and Hubel (1963u).

Apical segment

Mesial segment
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Fig. 4. Reconstruction of two penetrations in the apical segment
of the post-lateral gyrus, near its anterior end (from
Hubel and Wiesel (1962)). Legend as for fig. 3. Note
the ebrupt transition from receptive fields parallel to
the radial fibers to transverse receptive fields in the
terminel portion of the rightmost track.

% The receptive field axis is a hypothetical line through the center of
the receptive field and directed along the boundary between excitatory
and inhibitory regions (fig. 2).
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The principal characteristic that distinguishes complex fields
from simple fields is that the former respond with sustained firing
to moving lineal stimuli. The simple fields, responsive only at the
boundary between excitatory and inhibitory regions (fig. 2), fire on
the other hand only for the relautively brief period when the moving
stimlus crosses the boundary. It would thus appear that the relatively
great sensitivity of the visual cortex to moving stimuli is intimately
bound up with the complex fields.

The cells themselves, simple and complex, are apparently arranged
in cylindrical columns peorpendicular to the local cortical surface.
The column axes seem to be essentially the same as those of the deep
fiber bundles. Within these columns, the receptive field axes appear
to be conjugate (that is, each other's orthogonal trajectories) (figs. 3
and 5), some axes being (essentially) perpendicular to the local deep

fiber bundle, the others (essentially) parallel to it.

The projection of retinal regions upon the visusl cortex is
ordered, i.e., the receptive fields contained in a given cortical
column respond to corresponding portions of the two retinas. Hubel
and Wiesel {1962) state that within sucﬁ a column defined by common
orientation of receptive field axes there is no apparent progression
in field positions along the retina as the electrode advances, and
conclude that at the microscopic level the retinoptic representation,
vithin a given cortical column, no longer strictly holds. Hubel and

Wiesel do detect an apparently random staggering of receptive field




Fig 5. Diagrammatic representation of the cortical columns of
receptive fields (after Hubel (1963b)). Lines A and B
indicate tracks of two microrlectrode penetrations.

positions for a given cortical column. Upon close examination this
staggered structure does, however, seem to display a systematic varia- '
tion of retinoptic position, upon which is superimposed a random "jitter". .
An ordered relation between progressive depth of electrode penetration
and distance from the area centralis is detectable (fig. 6): For a

given angular bearing with respect to the area centralis, the farther

the retinal receptive field is from the arca centralis, the greater,

in general, the depth of the associated cortical receptive field below

the cortical surface.

The degrec to which the observed random variation represents true
random steggering of the cytostructure is not clear. It wonld seem
that the effects of deformation of the cytostructure by ihe passage of
the electrode, and angular errors of electrode direction with feapect
to column axis must enter as well as the rendomness present in the

cytoarchitecture itself.
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Fig. 6. Reconstruction of portiocn of electrode track through apical and
mesial segments of post-lateral gyrus near its anterior end made
during miltiple recordings (after Hubel and Wiesel (1962)).
(Only the first twelve cells are represented. Broken c:..ves
indicate the boundaries of layer 4.) The overlapping rectangles
in the leftmost part of the figure display the superposition of
receptive fields upon the retina, whose coordinate system appears
directly above (origin referred to area centralis).

The progression of similarly-oriented receptive fields is shown

in the central portiun of the figure. The rectangles outlined
with broken lines are the receptive fields. The crosses indi-
cate the relative position and bearing of the corresponding

area centralis. The numbert to the right give the field sequence:
1-12. The fileld following field 12 is apparently transverse to

an adjacent radial fiber., The arrows show the preferred direction
of movement of a slit oriented parallel to the receptive field
axis.
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The resemblance of these corticel columns of oriented direction
fields to the method of isoclines (or "direction field method") for
the graphicel solution of differential equations (Andronow and Chaikin,
1949; Cunningham, 1958; Kaplan, 1958) is indeed striking (fig. 7).
Régarding an optical imsge as an ensemble of contours, we hypothesize

the following theoretical model for the visual integrative process:

The whole visual field is permanently filled up with tiny
directional elements thut are essentially isoclines (elements
of same slope) arranged in cortical columns. A visual image
stimilates only those isocline nets that correspond to forms
in the image. The ensemble of slope elements corresponding
to a given image contour thus comprises a polygonal arc
approximation to the solution of the differentisl equation

defining that image contour.

The significant feature is that, in terms of what actually happens in
the visual cortex, the image is characterized not so much by the forms
that mske it up but rather by the differential equations (and initial
or boundary conditions) that govern these shapes. The visual cortex
thus seems to possess a built-in structure for graphical integration

of the differential equations of visual forms.

2: Qther Microelectrode Studies of the Visual Pathway.

The many other microelectrode studies of the cerebral corter and
the visual pathway that have been made are well described by Amassian

(1961) and Jung (1961, a,b). These studies have been voluminous, but
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only those aspects that bear directly upon our theoretical model will
be summarized here. In particular the work of Jung and his school
(Jung, 1961 a,b) seems to have very direct implications for the kind
of excitations appropriate to our theoretical mcdel. In addition
these papers are notable for a thoroughgoing summary of the connec-
tions between the neurophysiology of the feline visual cortex and the

psychophysiology of vision in nan.

I
Figure 7. The method of isoclines. Small arrows indicate
directed slope elements. The isoclines are the
radial lines, each of whose slope elements are
parallel. (After Andronow and Chaikin (1949)).
Jung (1961 a,b) distinguishes five classes of cortical neurons
according to their characteristic excitation-inhibition response under

either diffuse or patterned light stimuli. Type A neurons are in a
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class by themselves. They fire regularly at a frequency of from 8 to

15 discharges per second but show no response to either light or darkness.
They are apparently driven by nonspecific reticulothalamic stimuli and
constitute e "... medium background of excitation in the cortex..."

(Jung, 1961a, p. 631).

Type B,C,D,E neurons on the other hand are light (and/cr dark)
responsive, and are classified according to their characteristic response
under illumination of the retina. Type B and D neurons are apparently
duals (antagcnists) of each other. The type B neurons impart brightness
information; they are activated by light and inhibited by darkness.

The type D neurons on the other hand impart relative darkness informa-
tion; they are inhibited by light and activated by darkness. Type C
neurcns are inhibited at both the onset and termination of a light
stimulus. Type E neurons show a relatively long-delayed response to

a light stimilus tut a strong rapid reaction to the cessation of light.
The responses of the C and E neurons appear on occasion to complement

each other in somewhat the same way as the B and D neurons do (Jung,

| 1961 a, Fig. 33 Jung, 1961 b, Fig. 1).

s e

Although the shapes in the visual image constitute the forcing

functions for the differential equations of the visual integrative pro-

cess, it is the several categories just defined that determine the

microtime behavior of those cortical neurons stimulsted by the image.

s caciab e o s

It is this latter aspect of the neuronal behavior that will be needed
for relating our theoretical model to such phenomena as the alpha

k rhythm and its desynchronization.
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ITI. THE METHOD OF ISOCLINES AND ITS CONNECTION WITH THE VISUAL
INTEGRATIVE PROCESS

In the graphical Integration mgthod using isoclines successive

numerical values of the quantity m are first computed according to

- the equetion

m = £(x,y), (3)

where f(x,y) is given by (2). The value of m thus determined for
the point (x,y) is then assigned to the slope at that point. A curve
connecting all points at which the slcpe has the same value is celled

an isocline. The effect of this procedure is to reduce the differential
equation (2) to a sequence of equivalent algebraic equations of the form
(3), which then specify the locus of those values of x and y along

which the integral curves of (2) have a particular slope (fig. 7).

Thus, once an isocline is plotted in the x,y-plane, one can pick
out a set of line elements along the isocline that have the prescribed
slope m. The value of m 1s then changed and another isocline curve
plotted, and so on. The result is to eventually fill up the eintire
x,y-plane with isoclines, each carrying directed line elements of a

given slope (fig. 7).

Next one starts from a given initial point and sketches a smooth
curve, always following the slope of successive line elements in adjacent

isoclines. This procedure ylelds a graphical solution of the initial

value prcblem. A different initial value will in general lead to a

different graphical solution. The process is in principle capable cf
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any prescribed degree of accuracy, depending upon the scale, the distance
between ad jacent isoclines, and the total number of slope elements along

each isocline.

It thus appears from Hubel and Wiesel's microelectrode studies (Hubel
and Wiesel, 1962) that the visual cortex carries a direct counterpart
of an isocline net, the sliope elements being Hubel and Wiesel's simple
fields and the isoclines the cortical columns. The shapes in an object
imaged on the retina are identified as the envelopes of the corresponding
cortical fields that are stimulated. Tracing through the isorline net
that is stimulated is the analogue of the sxetching process described

in the preceding paragraph.

Such a model for the visual integrative process has many points of
contact with the psychophysiology of the visual integrative process. It
is well grounded on neurophysiological realities. It leads at once to
explanations cof such phenomena as the visual images evoked under flicker,
MacKay's complementary after images (MacKay, 1961) the alpha rhythm and
its desynchronization, the specific language disability known as develcp-
mental dyslexia (Bender, 1957), and the visual Gestalt de Hirsch, 1962).
The latter appears in its simplest aspects as the invariance of tie
differential equations of the visual integrative process under the appro-
priate Lie transformation groups. Memory and the more complex aspects
of the visual Gestalt, however, apparently require statistical decision
and prediction theory for the most general sort of concepts in Lie
groups and differential topology (Auslander and Mackenzie, 1963; Munkres,

1963; Steenrod, 1951; Yano, 1957).
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IV. THE DIFFERENTIAL EQUATIONS OF THE VISUAL INTEGRATIVE PROCESS

The isocline interpretation of Hubel and Wiesel's miecroclectrode
studies implies that the visual integrative process is based upor. some
first order differential equation (or equations). The question *hen
arises - which first order differential equations? The answer is pro-
vided by the Gestalt requirement that the visual image be irnvariant,
i.e., still recognizable as an entity, under rotations, translations,
and perspective transformetions (magnifications, or dilatations). We
therefore seek those differential equations whose farily of solutions is
invariant under the combined group of rigid motions (translations and
rotations) and magnifications. The determination of these invarient
differential equations thus reduces the problem to an elementary com-

putation in the theory of Lie groups.

That the features of the visual Gestalt (de Hirsch, 1962) must
involve invariance under a group of transformations has been recognized
by several investigators (Pitts and McCullcch, 1947; Culbertscn, 1957;
Rashevsky, 1960). Pitts and McCulloch vicwed a pattern of stimuli as
the arithmetic mean of a functional over all the transformations of
the finite group involved. Culbertson considered possible neuronal
networks that would generate, in the limit of translations, stimulus
patterns invariant under translations, rotations, and magnifications.
Rashevsky's approach was based on an interaction of several central
compiexes of neuroelements in such a way as to produce the desired

invariance at a higher, coordinating center. However, none ot these
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studi.es introduced the lLie group aspect, and it is believed that this
10 the essential new feature that provides the key to the actual workings

of the visual integrative process.

It will be assumed that the Lie groups and differential equations
involved are 2-dimensional. An optical image on .he retina is a 2-dimen-
sional mapping of the 3-dimensional world, snd although nonplanar, can
be thought of as a 2-dimensional manifold*. As Davson (1949) puts it,
"The retina has ... .become specizlized by the development of apparently
ver tical and Lorizontal meridians; these act as e pair of rectangular
coordinates through the fovea to which the pesition of any point or line

is referred."
1. Resume of Essentials of Lie Group Thecry

We shall here review briefly or.xly those aspects of Lie group theory
that will be needed in the application to Gestalt psychology made below.
The reader wiil be assumed to be acquainted with Ch. IV of (Ince, 1956)
or i1ts equivalent. A complete treatment of the classical projective
group may be found in (Li;a and Scheffers, 1893) or (Kowalewski, 1950).

A reader interested in a modern abstract treatment of Lie groups is
referred to the monographs by Cohn (1957) or Nomizu (1956), or to

(Auslander and Mackenzie, 1963).

The transformation in the plane

(x),¥7) = T,(x,y) = (g(x,¥), h(x,y)) (4)

# A manifold is a connected compact topological space that is locally
Euclidean.,
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constitut. a group if it has the usual group properties (closure,

existence ot identity and inverse, associativity). The subscript o
denotes a parameter {which is also understood to be in the arguments

of g and h). when T T (x,y) =T (x,y), the family (4) of
02 dl 62+dl

transformations is said to form a one-parameter continuous group,

denoted by G A Lie group is a continuous group on a differentiable

1‘
manifold suc.. that the differentiability properties are consistent

with the group properties.

The differentiability structure enters via the infinitesimal
transformation (or generator) of the group. Thus the system of dif-

ferential equations equivalent to (2):

X P(X7Y)
Ed?( )= ( ) ’ WD = f(x’Y): (5
y Qx,y

written in the form
dx P
= do,
dy Q

can be thought of as an "infinitesimal transformaticn®

g

(xl,yl) = (x + dx,y + dy) = (x + P(x,y)da,y + Q(x,y)d0). (6)

Each transformation~of the group can be obtained by iterating the infini-
tesimal transformation (x,y)= - (x + 3x,y + dy) a sufficient number of

times. In this sense (6) defines the infinitesimal generator of the

group.

wd baiida %%
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If we consider the variation induced on an arbitrary differentiable
function by the infinitesimal transformation (6) of the space variables,

we cbtain the following representation for the infinitesimal generator

U of the group:

U= Plxy)sk + Qg (7)

In particular, Ux = P(x,y),Uy = Q(x,y), so that an alternate form

for (7) is
U= (Un)gx + (Un)g (8)

The finite equations of the group are given in terms of U by the

Maclaurin series

F(xl,yl,d) = F(x,y) +; (U"F) ¢"/n! = eUF, (9)
1l

where U° indicates ar n-fold application of the operator (7). In
particular the finite equations for the space variables themselves
are

= x + 2 (U"x)d"/n!, Y, =¥ +; (uy) 6™/nt. (10)
1-

X
1 1

We turn now to the matter of invariance uider a Lie group, and

first of all define invariance of a function F(x,y) wunder the actiocn

of the group. This means that if (x,y) == (xl,yl) under some
operation(s) of the group, F(x.l,yl) = P(x,y) for all o¢. A n.a.s.c.
for invariance of a function F under a group G, whose infinitesimal

generator is U, is that UF = O, which is, formally, a partial dif-

el

ferentlal ecuation. Hence everv one parameter group ul in two variables
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has one and only one independent invariant

C = F(X’Y) ’ (11)

obtained by solving the system

dx _ dy
P(x,y) ~ QAxy) ° (12)

It is clear that if P = 0= Q for some point (xo,yo , then
regardless of what F(x,y) may be, UF(xo,yo) = 0, and (xo,yo) is
a fixed point of the transformation. Such points are sald to be absolute,

or point, invariants.

An integral curve of the differential equation ?1% = /P is generated
by successive applications of U = P'é% + Q@%’ starting from some initial
point. Hence the family of integral curves (11) is invariant under the

group, and is said to display curve invariance.

A family of curves may also be invariant in the sense that the
individual curves, while shifting under U, still m: ke up the same family

as before. A n.a.s.c. for family invariance is that

UF = ((F), (13)

where f(F) 1is an ordinary function of F. Thus, for example, for

the rotation group

X, = xcoso -y sing, y; =xsino +y cosa, (14)

whose infinitesimal generator is

N -
Urot. = -y xay ’ (15)
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ve have, letting F = y/x, that

UF = (y/x)2 +1=F + 1.

That is, f =1+ Fz, thus establishing the invariance, under rotation,

of the family y/x = const. of straight lines through the origin.

If Fl(x,y,z) =Cy» Fz(x,y,z) = C, are two independent solutions

of the partial differential equation
- ) ) e
‘ U'F = P(x,y)gxz + Q(x,y)-gyg o+ Z(x,y,Z)% = 0,

g‘ then the most general equation invariant under the group whose infinitesimal

generator is U is of the form @(FI,FQ) = 0, or in solved form, F2 = q(Fl).

This result is basic to the determination of the class of differentlal equa-~

tions invariant under a given lie group.

It can readily be shown that the augmented transformation
x, = &(xy30), ¥y = hx,y309), ] = p(x,¥,5'50),

acting on the tricoordinates (x,y,y') in the plane, forms a group.

This group constitutes the extended group of the given group Gl. Its
infinitesimal generator is
= Pl + Axy) 2 D 6
o= Playdag + Q) as + 200y & (16)
vhere 2Z{x,y,y') is given by the formula
-, & _8y , 8 2
Z(x,y,y") f‘x+ (@y ax) y' ?‘y‘y' . (17)
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We are now in a position to determine the form of those first order

differertial equations invariant under a given Lie group.

Suppose then that
F(x,y,y') =0 (18)

is a general first order differential equation invariant under the

extended group (16). The n.a.s.c. for this invariance i. the relation
U'F = 0, (19)

which of course holds, either of itself or by (18). This is a partial
differential equation whose general solution requires two particular

integrals of the system

dx d dy'

_ _dy _
PGy~ Ax,y)  Zlxy,yh) (20)

If Fl(x,y) = C_1 is a solution of the first pair of equations, then
Fl is independent of y' since P and Q are. Now suppose
Fz(x,}’,)") = C‘2 is a solution of the full system, and so necessarily
involves y'. If H(Fl) denotes an arbitrary function of Fl’ the

new function

F = F2 - H(Fl)

satisfies the partial differential equation (19), i.e., U'F = 0 for

this F.

The groups that we have mentioned as basic to the visual Gestalt
(rotation, magnification, translation) are each subgroups of ihe

general projective group of the plane. The finite equations of the
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projective group
a,x + bly + ¢, a,x + b2y + c2 )
= ? y = . + ’ (21
! an + b3y + c3 1 a3x + b3y 03

define an 8-perameter continuous group that takes straight lines into

straight 1lines and leaves at least one point of the plane fixed (Lie and

Scheffers, 1893) +« Through this fixed point there passes an invariant

t line. The infinitesimal generator of the general projective group is a

linear combination of the eight operators

S

8 @ 8 3] g -8 -2 B ;i

B A XA Y R X Yo X —+xyr,w-€-+y2-§-. (22)
x’ &y’ © Bx &x By ey Bx dy &x dy

The most genural projective transformation of the plane that leaves the
line at infinity (in visusl terms, the horizon) invariant consists of a

linear combination of the first six subgroups in (22) (Lie and Scheffers,
1893) .

Certain linear combinations of the subgroups (22) will be of
especial interest from the standpoint cf the visual Gestalt. These

may be conveniently summarized in the following table:

Group Infinitesimal Generator Finite Equations

Rotation (15) (counterclockwise) or (14)or X; = X cos o+ y sing
(23)

y '5% - x % (clockwise) y,=-x sing+ y cos q resp.

Magnification 5 a > -

(or similarity «x Y By X Tex,y ey (24)

or perspective)

Translation '6% +v z-% X, SXx+d, ¥ =y +tyo (25)

o 3 =
Mgid motions ll(X'&'yf‘ - yﬁ-;)iv > At %3 & X, = x cos 8-y sinf+ a, (26

Yy =xs8inf®+ ycos9+ b

8
Affine (or (6, +~ @.x + & y)= + = (a,x + byy + c,) (27)
linear group) 1 : & g L 2 .

¥y = (azx + be + 02),
.lb'; - a,b # 0.




2. Invariant Differential Equations of the Visual Integrative Process

Since the visual Gestalt demands that images be recognizable by their
intrinsic over all character, however they be presented to the viewer
(within certain limits), the similarity and rigid motion groups, (24) and
(26), will be basic to our further considerations. We therefore consider

the following infinitesimal generator

_ R By, (8,0 ..,
U—(—yax+xay)+(ax+Yay) +o(x3x+yay),

or

[t
H

o] o}
(px -y + g+ (x+py+ V)g, (28)

which combines the infinitesimal generators of rotation, translationm,
and magrification groups in sufficiently general form, and seek the
most general differential equation invariant under the combined group

of (28).

According to (17) and (20) the invariant differential equatio:.s

may be determined from the system

dx . dy - dy' 5. (29)
PX-y+1l x-pyty 1+y!
The change of variables
pu-v=px-y+1, utpv=x+opyty (30)
takes (29) into the equivalent system
du _ dv _ dy' . (31)
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According as we consider

z = u/v or v = v = 1/z, (32)

as the dependent variable we obtain two different forms of the first

pair of eqs. (31). That is,

3P gy, e W BoM g (33)
v 2 u 2
l+z 1+w

which may be int.grated by quadratures.

Thus, the first equation has the solution

v = (1 + 1) 110) () _ 4,y H1He)

or
e = (u2 + vz)é-. exp{arctan %} (34)
Similarly, from the second equation of (33),
6‘_/\1 = (1 + iw)ﬁ(lﬂp)(l - iw)#(l-ip) ,
or

g = (2 + A enf- arcian I = 26 (39)

With z and w as new variables the system (31) may be written as

dz dw dy'
l+y?

142° 1+

> . (36)
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The pair consisting of the first and third of egs. (36) has the solution

arctan z + arctan y' = @(C),

or

z +

' 2 e&,"ctan(u/v))
1 - zy' ’

= tan 0(€) = - AWu? + v

where Q 1is an arbitrary function of the arguments shcwn. Solving for
y' = dv/du, we obtain the following form for the most general differential

equation admitting the group of (28):

_dv _ -u - 0 /u2 + 2 earr:tan(u/v))V o
du v .
v - Q /u?. + 2 &BTC ,an\u/v))u

The other pair of equations in the system (36) yields the soluticn

1

arctan w - arctan y!' = @J_(GJ_) .

This equation can be solved in a similar manner to obtain the form
of the most general i- ariant differential equation governing the con-

jugate curve:

-arctan(v /u )
dy dv -v+Q(u2+v2e )
de_ duJ_ 5 -erc tan( V_‘_ﬁl*) *
4 - Q (Ju +v- e v
A e . e o

If furthermore the form of «  is such that at ' (u,v),

Q_,_('Juz + v2 e-arctan(v/u)) = - Q(f\/u2 v ve earctan(U/V))’ (39)

then (38) and (39) do in fact determine curves that interest orthogonally.




The paranetric form of the invariant differential equations (37)

end (38) is as follows:

d u (-Q 1l u (20
— = , 40
cs v) -1 -Q)(v)

1 -1 -Q u
00 - e
do Q‘ -1 v* -

v
Y

The corresponding second order systems are then

2 u 0 -Q u
d d dQ
_+Q_¢[1+_)()=( )() (41)
(da2 da do/ \ o o/ \v]’
du dv
or, introducing the expressions for 3= and 3= from (40) ,
2 u 0 =-1y\zzu
d aQ 2
o) (o N)
(d62 2 v 1 oA/’
and
(&-0-2)()-(=-2)C X)) w
- {1 -Q =[x . = . (41
d&z = V‘- e de -1 0 V‘ Y

The form (41) is best suited for analyzing the microtime behavior
of the (u,v)-field. Expressions (4.1_‘_) and (42) display the coupled
nonlinear oscillatory behavior characteristic of the visual integrative
process. Recalling that the invariant argument of Q 1is essentially
of the form Juiz + v exp{- arctan(v/u)}, we see that (41,) end (42)
can be thought of as a sort of vector Lienard equation in which eech of

the field variables acts as forcing function for the other.
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Vo  VISUAL PHENOMENA ASSOCIATED WITH THE DIFFERENTIAL EQUATINS OF THE
VISUAL INTEGRATIVE PROCESS

1. Images Evoked Under Flicker Stimulation

A stendard procedure during the taking of an electroencephalograph
is the,illumination of the closed eyes of the subje~t by periodic flashes
of light at about the frequency of the alpha rhythm. Under such cir-
cumstances a whirling spiral image is of@en evoked, ani "whirlpools,

explosions, Catherine wheels" are also seen (Walter, 1963, p. 101).

It is known that a sudden flash of light into the eyes will stimu-
late the brain into damped eleétrical oscillations whose frequency is
approximatel - that of the alpha rhythm (k>oldridge, 1963, p. 109). How-
ever, the repetition of such light pulses at a frequency near the
critical flicker-fusion frequency apparently results in a constant
stimilus, as it appears to the visual cortex. In such circumstances
the visual ¢*fferential equations (37) and (38) provide a direct ex-

planation uf these evoked phenomena in the following way:

et Q = const. in (37), say, i.e., regard the stimulus as persisting
over the whole visual field. Then {37) can be written in polar coordi.ates

as

d lnr

—— =t (43)

The solution of this equation is the logarithmic spiral

SEs (44)
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The companion differential equation (38) also ylelds a logarithmic
spiral

-9 Ju
e * 145)

These expressions thus describe the spiral images evoked in the
visual field by a stimulus that is "constant", i.e., the same, in the
limit of time resolution, over the whole family of Q-contours. The
whirling character of the spiral follcws from letting o denote time
in the parametric form (40) of the visual equations, and taking into
account the resulting time variation. The other types of evoked images
are more characteristic of the rest state of the visual cortex, which

we now proceed to discuss.

s HegKay!s Complepmentary. ! Tter.lmages

MacKay (1961), in his researches on the perception of regular,
spatially repetitive patterns, found that long raige interactions be-
tween widely separated portions of the.visual field were apparently
essential to the visual integra’ive process. He noted four types of

striking visual effects evoked by repeated patterns:

(1) "Moiré" effec s, which appear as flickering shadows in such
petterns as that of fig. 8. They disappear upon retinal stabilization,

and thus are apparently excited bty the normal eye scannihg movements.

(11) The "subjective" colors observed in line patterns in motion

by Ero and Dallenbach (1939).

(11i)A 'streaming phenomenon" drifting at right angles to the lines

in a pattemn.
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(iv) The cumpiementary after image (CAI), consisting of a shimmering
after effect seenv for a f2w seconds on a blank background as a scurry of
wavy lines or shadows moving in directions essentially perpendicular to
the lines in the stimulus pattern (figs. 8,9,10). For details of the
experimental procedures the reader is referred to the original paper

(MacKay, 1961).

Fig. 8 A radial pattern that induces a circularly symmetric
complementary after image. (After MacKay (1961)).

MacKay established that neither (iii) nor (iv) are related to eye

movements. We note that figs. 8 and 9 taken together are essentially

the same as fig. 11 below, describing the cortical rest state. MacKay's
fig. 4 (reproduced here as fig. 10) shows the oscillatory perturbations |
imposed on a family of circles after stimulation by the radial line

pattern of fig. 8.




{After MacKey (1961)).

Fig. 9 A circular pattern that induces a radiel complementsry after

s

@
1961)

after image induced by fig. 8.
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We now note that the cortical rest state (no visual image present)
may be described (neglecting spontaneous discharges) by (37) and (38) with

Q=0 =0, ..,

v.&
== . (46)

PN

g
|

L and
du v du

F

The corresponding second order parametric equations are, from (42),

2. 2
g—%-+ u =0, g—%-+ v=0 (47)
do da
dqu d2v$
-u =0, =y =N (48)
g2 - de? *

The pair (47) represent true sinusoidal oscillations in u and vj (48)

on the other hand represent damped oscillations. It thus appears that
sustained oscillations are possible only transverse to the u,v-coordinates
of the visual field. We shall have more to say in this conneection in

our discussion below of the alpha rhythm.

The integrals of (46) are well known:
uw +vi=a and v, Tau. (49)

The first represents a fam!ly of circles concentric about the origin; the
second an orthogonal family of radial lines (fig. 11) . We note that the
intersection of a given radial line and au given circle is enough to define

a point in the visual field unambiguously.

It thus appears [1om MacKay's work and the above theoretical result
that stimyiation of the visual cortex by a repetitive, radially symmetric

pattern that essentially imposes a resonance on the cortical rest pattern

(as exemplified by the curves (49) and fig. 11) can bring about a "ringing"
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of the visual response in directions conjugate to the stimuius pattern.

We note in this connection that some of MacKay's subjects that suffered
from astigmatism had difficulty in seeing CAI (MacKay, 1961, p. 346).
Such a situation could come about through a failure to schieve r¢sonance
between ~timulus pattern ard an asymmetric cortical rest state resulting
from continued astigmatic distortion. The usual cortical rest state,

as indicated by (49) and fig. 11, is inherently symmetric.

E Fig. 11 Integral curves for the differential equations of
b the cortical rest state. Note the resemblance to
3 the patterns in figs. 8 and 9.
The visual phenomena of the cortical rest state outlined above
slso apparently bear directly upon the circular images in the eigengrau

L described by Jung (Jung, 196ls, p. 295).
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3. Developmental Dyslexia ag a Variant of the Visual Differential kquations

Developmental dyslexia is a form of specific language disability that
appears in childhood as an almost crippling inability to read and/or write
(Bender, 1957; Money, 1961; Stuart, 1963). It is characterized primarily
by an inordinately large number of confusions of letter symbols, especially
reversals ("b" for "d", "p" for "q", "saw" for "was", etc.), which persists
well past the first year of school. The disability is neurologically
intrinsic: No brain damage or significant impairment of vision or hearing
are present, and the only emotional disturbance is that attributable Lo
continued classroom difficulties. Since these children (about one out of
every ten) are unable to learn by the "sight method", they are in a very
real sense victims of cur standard educational system. The situation is
doubly unfortunate since these children seem to be extra well endowed

with creativeness and the capacity for abstract thought (Bender, 1957).

A full treatment of developmental dyslexia from the standpoint of
visual differential equations may be found in Part II of this study.
Here we contr.t ourselves with outlining only those aspects of the visual
differential equations that appear to be involved *n the reversals de-

scribed above.

If the sign of the slope is changed in (46) we obtain the new

system
dv! v!
dvl _ul S oo
au' v'’ and dui--u" (50)
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Fig. 12. Integral curves for the rest-state differential equations
with reversed slope: conjugate families of hyperbolas,
The integral curves for this system are the conjlugate families of hyper-
bolas (fig. 12):

2 2 2

vi® - utc = a'c, and u's! =a'. (51)

Eqs. (50) may be looked upon (see Part II) as the rest state equations
for a visual Gestalt whose basic invariances are with respect to (clock-
wise) rotations, magnificetion, and glide displacements. The essential
difference between systems (46) ad (50) is that hyperbolic, rather than

radial, displacements are involved.

A gimilar, no doubt closely related hyperbolic frame of reference
arises in a natursl way in Luneburg's theory of binocular vision.
The hyperbolic visual metric is probably the first to develop
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in the infantile visual cortex. Evidence for the existence of such a
visual system during infancy can be gleaned from a study of uesell, Ilg,
and Bullis (1950). Sometime during the early years of life - commonly
no later than the first year of school - system (46) becomes dominant.
The alpha rhytaim usually becomes well established at this time and the
dysrhythmia characteristic of the infantile (and dyslexic) electro-

encephalograph almost entirely disappears.

Fig 13 is inlended to indicate the symmetries in such a hyperbolic
reference system that could bring about the letter and word reversals
described above. The origin in system (46) is a point of neutral sta-
bility, a so called vortex (fig. 11). For the reversed system (50) the
origin constitutes a saddle point, a type of singularity that is always
unstable. This suggests that the foveal part of the visual field is
inherently unsteble in the dyslexic case. As a consequence, for an object
near the center of vision, the visual integrative process could jump in
a seemingly random manner from one quadrant to another and from one branch
of the reference hyperbola to the other. The confusion that this would

induce in & reading situation is not hard to imagine. The peripheral

vision on the other hand should be relatively unaffected.

The second order equations thuot follow from the parametric form of

(50) are all of the damped oscillatiom type:

u' u!
d2 v' v! =0
dd2 u' u'

. .

v'l' 1-"'

L L
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Fig. 13 Reproduction of fig. 12 with impressed letters "b","d",
"q", and "p"., Each letter is symmetric with respect to
the horlzontal or verticel axis separating it from the
next, and symmetric about the origin to the letter in
the opposite quadrant. The origin is a saddle point,
a position of unstable equilibrium.

This feature, too, is consistent with the immature dysrhythmic type of
electroencephalograph commonly encountered in dyslexic children (Bender,

1957;3Cohn, 1949, p. 597).

-

This of course cannot be the whole story. The physiological origin
of ihe slope reversal is not clear, althougii nystagmus and labyrinthine
polarization may play a role (Jung, 196la,b). Direction of cortical
scan, anomalous depth reversal of electrical polarization within the
cortex (Amassian, 1961), ontogeny*,learning, and biochemical variations
may also enter. Higher recognition phenomena must also involve the sort
of prediction and statistical decision processes that are described in

Section VI of this study. Even so, enough characteristic features of

% Which traditionally recapitulates phylogeny.
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developmental dyslexia fit the reversed slope model - which in itself
is based on known visual neurophysiology - to provide a working hypo-

thesis.

b The Alpha Rhythm and Its Desynchronization

The alpha rhythm is a more or less regular oscillation, in the
frequency range 8 - 13 c.p.s., of the electric potential of the brain.
It is most prominent in the occipital region of the head, and is appar-
ently closel;” associated with the rest state of the visual cortex. The
alpha ;hythm appears in the electroencephalograph only when the subject
1s relaxed end resting, with eyes closed, and mind free from visualiza-
tion or deliberation. Mental problem solving or opening the eyes (even
in a darkened room) result in the "desynchronization" of the alpha ¢
rhythm, i.e., its replacement by a low-amplitude oscillation of rela-

tively rapid fluctuation.

The frequency spectrum of the alpha rhythm is centered at about
10 c.p.s. (Wiener, 1958, p. 68). Other subsidiary peaks in the frequency
spectrum of the electrical activity of the brain occur at about 5 c.p.s
(the so called theta rhythm at 4 - 7 c.p.s.) and near d.c. (the so called
delta rhythm at 0.5 - 3.5 c.p.s.). The frequency range of the rapid
fluctuations chars~teristic of alert mental sctivity (the so called beta

rhythm) is 14 - 30 c.p.s.(Walter, 1953).

The ratios between these frequency rsnges are strongly suggestive
of either subharmonic oscillations or parametric excitation (Minorsky,

1962, Chs. 19,20). The "desynchronization" of the alpha rhythm upon




presentation of a visual stimulus has much in common with such well
known differential equation phenomena as asynchronous quenching of e
subharmonic oscillation (Minorsky, 1962, Ch. 24) ani the detuning of
a parametric resonance by a sufficiently large frequency excursion

(Minorsky, 1962, sec. 20.5).

Although subharmonic and parametric resonance are essentially
different in origin, they yleld phenomena which are in appearance
indistinguishable. In true subharmonic resonance the energy source
is external and so appears by itself on the right hand side of the
governing differential equation &8 a periodic forcing function. In
parametric resocnance on the other hand the excitation arises through
a periodic variation of some coefficient (or coefficients) of a homo-
geneous differential equation. The essentisal subharmonic nature, how-
ever, is present in both types of excitation. In both subharmonic and
parametric oscillations the amplitude of the resonance oscillation
decreases with increasing detuning and eventually disappears at a
certain critical level.

An inspection of the invariant differentiesl equatiors (37) and
(38) indicates that it is more with an unusual form of parametric
excitation than with asynchronous quenching of a subharmonic resonarce
that we have to do in the present instance. The image excitation
a)jpears as & coefficient of the form variables (u,v) ,(ud_,vd_) rather

than by itself as a driving term.



e R

B SRV

39

If we consider the microtime behavior of a single neuron, it
displays a characteristic repetitive firing in response to a stimulus
(Jung, 196la,b). Although these neuronal discharges are certainly not
strictly periodic, they do constitute "recurrent ..otions" in the termin-
ology of the qualitative theory of differential equations (Nemytskii and
Stepanov, 1960) and even appear to be almost periodic (ibid). The
characteristic behavior of the neuron at (uo,vo) in tne visual field

may thus be represented as

Q( /2 4 2 earctan(u/v))

=J(ugvy T d(t -1y, 52)
Ugr ¥y .t ] Ty (

(ugvy)
where J 1s a coefficient characteristic of the particular type
(A,3,C,D, cr E) of neuron activated (Jung, 196la,b), 3(t - T) denotes
the delta function, and the <,'s comprise a relatlvely dense set
(Nemytskii and Stepanov, 1960) of time intervals characteristic of the
neuronal type involved. J(uo,vo) vanishes if the neuron at (uo,vo)

18 not activated by the visual stimulus.

It is clear from the second order visual fleld equations (41) with

52) for the image function Q, that it is a radically different form

of the differential equation of parametric excitation - if indeed it
can be called that at all - that is involved. In fact the individual
equations resemble more, perhaps, a sort of generalized Lienard equation
with generalized functions as coefficients. Although conditicas for

the existence of a periodic solution of the Lienard equation ¢.¢ o1l
known for continuous coefficients and periodic forcing function (Cles.ri,
1963) , nothing is apparently known about the badly discontinuous case

exemplified by combining (41) and (52).




To obtain some idea of the behavior of uw and v wunder such

circunstances, let us transpose all terms containing Q in (41) to
the right hand side and consider the equivalent integral equation
involving generalized functions (Kaplen, 1962):

. t d
u(t) = K, sin t + Kz cos t - J(uo,vo){z} § sin(t - t')[a(t' - 'rx)(;-;tg, + vo) +
x} 0

+ A (t! - 'r“)uo]dt', (53)

t dv

v(t) = Ki sin t + Ké cos t - J(uO’VO);i} {)gin(t - t") [a(t! - 1-”) (uo - c'i_t% -
<

- (8" - T v latr, (54)
where {u} denotes the set of - € % Evaluation of th: integrals in

(53) and (54) by the usual formulas of the theory of generelized functions
leads at once to the forms

u(t) = sin t’xl = J{i}[uo('t‘)ain Ty + Vg(Ty)cos %] ; 4

(55)

+ cos t{xz - J{f}[uo(‘t“){coa Ty = VolTy)ein 'rxlf )

v(t) = ain %Kl! +3 2 [uy(1,)oos T, - Vo(T,)8in 1,‘]‘ +

N . (56)

+ cos t gl(' - J 2 [uy (e, dein 7y + Vo Tx) co8 tx]z .

° n

If these exnrexsions are to satiniy (40) also, then we must have

= XK., (57)



and the following system must hold as well:

K, 2sint + K, Zcos % =J2{u('t)2,cos('r -1:) »v(ﬁ:)zsin('t -1:)}
1{} & < } 2 {“} i (58) ;

M {n
-K, ZcostT +K, Tuint = - {u(‘t)Zsin('t- ) = v (t) 2cos(t -x)}.
1 2
3 B ™S B {x} WO T T
Solving the system (58) and putting the result and (57) back into
(55) and (56), one finds, after some straightforward trigonometric reduc-

tions, the almost periodic solutions

i . ’ E
u(t) = {_Ei ‘;.,_"_"';'T‘\{EE‘;O(T"){pi:v}cos“-‘t +'r“-'r )-vo('l: ){“f:v}sin(tﬂ -‘t“-‘t )]«-.
(59)
= {“i:v}coa(-:u.x ).r [ ('t')cos(t-‘tx)’rvo('t,‘)sin(t-"u) ]) )
end

J ] -

v(t) = (uo vo) ( u ('r ) = sin(t-'t +T =T Y+v (T ) = cos(t+1: -T =T )]
pX coe('tu-'tT 5 {“’v} B 0" x {H,V} B »

{pov]
{60)

+ I cos(t -t ) ? [u (‘t )sin(t-t)-v ('C )cos(t-'r )]
TR %

The almost periodic character of the u,v-oscillations excited by a
neurcn at (uo,vo) firing at times ,,7,,...,7T (€ t) is evident from
inspection of (59) and (60). If the neuron is of Jung's type A, which
discharges more or less regularly without a specific stimulus, at a
frequency in the alpha range (8 - 15 c.p.8.), then the oscillations
determined by (59) and (60) will have the observed characteristics of

the alpha rhythm. If a visual stimulus is presented, on the other hand,so



that the {t ]} sequence is that of the more rapid and irregular dis-
chai-ges characteristic of neuron types B and D, and C and E, then a
"desynchronization" of the A-type oscillation would appear. If we now
suppose that the stimulus point (uo,vo) ranges over all the cortical
neurons that are ac¢tivated in the visual field (i.e., J now represents
a summgtion over these (uo,vo)), then it is clear that we have an almost
periodic oscillation with a distributed execitation. Qualitative versions
of this result have been given by Lashley and Sholl (&holl, 1956).

We should not lose sight of the fact that the relatively dense set
(11,...,1N) is essentially a random sequence as well. It is therefore
ratural to associate an oscillatory random process “.1d, 1954, p. 15)
vith it. The more or less regular oscillation of the alpha rhythm may
then be viewed as an instance of Slutzky and Romanovsky's "si::soidal
limit theorem® (Slutsky, 1937), the burden of which is that even with a

th

purely random series, repeated pairwise moving averages and m"" order

differencing will generate & cyclic variatior, which in the limit is
sinmsoidal.



VI. STATISTICAL DECISION AND PREDICTION THEORY

The Lie group operations that we have considered, and the invariant
differential equations (37) and (38) that follow from them, have involved

only very basic aspects of the visual integrative process. In actuality,

. however, visual pattern recognition seems to be a stagewise process in

which the mind goes through a rapid series of comparisons with what it
already knows. Eventually, in proper Gestalt fashion, things click into
place and we recognize the pattern for what it is. Learning can often
shorten this puzzlihg over a given pattern quite considerably, which
again indicates thé prominent role of memory and prediction in the recog-

nition process.

Such considerations as these lead us at once into the domain of
statistical decision and prediction theory. Nut a great deal is known
in this connection for the sort of functional equations that are involved
in the visual integrative process. Research on the statistical aspects
of Lie groups is only little more than a decade old (Brillinger, 1963;
Grenander, 1967), and more work in this field is needed before a pre-
diction and decision theory fully adequate for our purposes can be
formilated. Brillinger's main theorem (Brillinger, 1963, p. 495) seems
to be the closest avuilable result and would apparently suffice for the
basic aspects of the visual Gestalt if suitable decision procedures and
risk functions could be prescribed. This avproach will be discussed in

detail in a later part of this study devoted specifically to memory and

statistical prediction and decision theory.
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With regard to statistical invariance in general and the prediction
theory for linear systems of random differential equations, we are in
a somewhat batter position (Bartlett, 1955; Beutler, 1963; Doob, 1953;
Lebmann, 19593 Shiryaev, 19633 Wesler, 1959). The restricted minimax
and modified minimax (or "slicing")principles (Hodges and Lehmann, 19523
Wesler, 1959) are each directed toward making maximum use of previous
experience in a statiastical decision procedure, and thus appear especially
spp~opriate in the present context. Wesler's approach, via partitioning
the set of states of nature (imeges) into subclasses or "slices",exhibits
the stagewise sort of decision procedure that appears to be involved in
visual pattern recognition.

Tne visual differential equations (40) and (40 ), with memcry, would
secm to be a vector, predictive form of the stochastic differential equa-
tion studied by Ito (1951) and others. Systems whose parameters vary
randonly in time, i.e., random parametric excitation, have also received
study (see Bogdanoff and Kosin (1963), or Caughey and Dienes (1962), and
the references given there), but no prediction theory appears to have
been formulated. Some parts cf the theory of random parametric excita-
tion are still contrcversial, and much remains to be done here also. The
randonm differential equation aspect, as well as that of the modified
minimax decision principle briefly mentioned in the preceding paragraph,
will also be iaken up in a later part of this study devoted to statistical

questions.

The introduction of statisticei decision and 'prediction theory
automatically raises the matter of MEMOTY o The relative roles of bio-
molecular (Hydén, 1960; Hydén and Egyhdzi, 1962, 1963) and neuronal
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(Dingman and Sporn, 1964) mechanisms in animal memory is immaterial to
our menory model. Chaages in the truvel time of the electrical nerve
impulse through the neural net arising out of either local blochemical
modification of the neuronal electrical conductivity or dendritic
lengthening through axoplasmic flow could account for memory phenomena

in terms of oscillutions in systems with time retardations (Minorsky,
1962, Ch. 21). Even though the number of time lags is finite, the
difference-differential equations that are involved in such retardation
phenomena always have an infinite spectrum, i.e., such a system can in
principle oscillate at an infinite number of frequencies, thus providing
nnlimites memory capac.ty. In practice the retardations cause damping

of the oscillatiors, so that only a finite number of ccrnonents contribute
significantly to any given oscillation. In many respects these retarded 5
oscillations resemble autcregressive schemes (Wold, 1954), and the |
phenomenca of parametrlc excitation, which has been discussed briefly

above and in sec. V.4, is alsgo involved.




VII. CONCLUSION

The material covered in this report divides naturally into three
categories: (i) the cortical counterpart of the method of isoclines,
the visual Gestalt in' terms of Lie group operations, and the invariant
differential equationla: of the visual integrative process; (ii) comparison
with experimental evidence: flicker phenomena, complementary after-
imeges, developmental dyslexig as slope reversal in the visual differ-
ential equations, and the alpha rhythm andi its "desynchronization";
(111) memory and recognition in terms of statistical decision and pre-
diction theory. Only (i) has been given a full treatment here. Detailed
rxpositions of the role of slope reversal in de-elopmental dyslexia and
the statistical decision and prediction theory required for a fuller
explanation of Gestalt and memory phenomena will be reserved for separate

publications.

Two other important aspects of visual pattern recognition have not
heen discussed in this part (I) of the study, viz., the corticel dif-
ferential processes involved 1n the recognition of motion and curvature
and the neuronal interconnections required by the isocline model and the
visual differentiel equations (37) and (38). The former is easily
handled in terms of' the well known celoulus formulast

df _ ., d
R (61)
2 2 .
_ % _ .24d% . . at
a. = =& + 6 3 (62)
E a2 g 4




vhile, for fixed time., the curvature is given by

x(s) = [<d2“>2 ‘12—‘2')2]1/2; (63)
ds
or
x(e) = (& _dvdiu Y /12 + (§93%/2, (64)
do de®  de d¢°

In these expressions & denotes either u or v, V{ 1s the velocity
in the € direction, t is time (a dot over a variable inaicates dif-
ferentiation with respect to time), ¢ is the cortical parameter (phase,
time, or whatever), °§ is the acceleration in the Y direction, x

denotes local curvature, and s represents arc length.,

Whether the simple fields are actually interconnected within the
cortex in such fashion as to process first and second derivatives according
to the prescriptions in (61)-(64) is an open questioﬁ. However, many
Investigators have noted the necessity for something tnat is at least
equivalent to th se operations. As Granit (1962, p. 756) puts it,

"... the cortical response ... is adjusted so as to emphasize everything
that involves discrimination, i.e., smll fields, direction, movement,
contrast, almost as if it were taking the second derivative ...". We
further noted in our discussion of Hubel and Wiesel's work (sec. II)
that, while both simple and complex fields were sensitive to motion

of the light stimulus, the comple: fields were esprcially so. This
suggests that the simple fields are interconnected within the complex
fields in such a way as to estimate (61) and (62). Such cortical com-
putation could be accomplished either by further reciprocally anta-

gonistic inhibition of the first differences given by the simple fields
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or by & furthor app..cation of the method of isoclines (Cunningham,
1958, sec. 3.3) to differential equations like (42) and (41)).

Concerning the neuronal interconnections involved in the simple
fields that enatle the cortex to solve (40) and (40 ) approximately,
there does not appear to be enough neurophysiological data of the right
tyoe to permit precise statements, A start in this direction hes been .
made by Gerstein and Clark (1964), but even then their work is not oriented
toward the differential properties of the neuronal interactions. The
history of cytoarchitectural studiss of the cortical neurons 1s well
set forth by Sholl {1956), but this bears much more on structure than

on function*.

The inhibitory character, both reciprocally antagonistic (time) and
lateral (space), of the neuronsl action suggests that first and higher
differences are bound to play an important role in the network of
neuronal interconnections. The work of Feasard (1961) 1s of considerable
interest in this regard. e further note that such difference operations
ere not inconsistent with the autocorrelation principle advanced by
Reichardt (1961), since the latter is implicit in such difference opera-

tions as
uvemge((l - 52)2 = varimce((l) + variance((z) -2 covaria.nce((l,tz),

vhenever o.vemge({l) = average((z).

¥ Even #0, the resemblance between the structural character of the
principal types of neuron present in the cerebral cortex (Sholl, 1956)
and the three types of components (i.e., sets of trajectories) that are
possible in such systems as (40) or (4Q.) if they are to be structurally
stable (De Baggis, 1952) is worthy cf note.
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This concludes Part I of the study. Subsequent parts will deal
in detail with slope reversal in the visual differential equations and
developmental dyslexia, statistical decision and prediction theory for
visual memory and Gestalt, and the information theoretic aspects of

paticrn recognition by the method of isoclines.
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